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II. Light is a Ray (Geometrical Optics)
II.F. Thin Lenses

1.  Image Formation by a Thin Lens

A    lens    is simply a combination of 2 refracting interfaces, at least one of which is curved.  Usually
the interfaces are the 2 surfaces of some piece of material that has a different index of refraction
than its surroundings.  Consider imaging by a standard lens in air.
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The lens is considered to be a    thin lens    if the piece of material is thin enough so that the light rays
inside are negligibly short.  That is, mathematically we can neglect the thickness of the lens so that
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where we include the minus sign because the object of surface 2 is a     virtual object   .

Adding the 2 imaging formulas above gives 
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If we define the first object distance s1 ≡ s and the second image distance s’2 ≡ s′, then we get the
imaging formula that relates the object and image distances and the radii of curvature of the 2
surfaces of the thin lens:
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Recalling the definition of     Focal Length     f as the image distance for an object infinitely far away, or
the object distance that produces an image infinitely far away, we obtain an expression for the focal
length often called the Lensmaker’s Equation:
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    Lensmaker’s Equation for the Focal Length of a Thin Lens   :
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Combining this expression with the imaging formula we obtained above, we arrive at the

   Imaging Formula for a Thin Lens   :
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2. Positive Thin Lenses

A     positive thin lens    has a positive focal length, f > 0.  Positive lenses are thicker in the middle than
they are at the edges.  There are 3 standard types of positive thin lenses:

biconvex planoconvex positive meniscus

Depending upon where the object is located near the lens, there are 4 general relationships between
the object and the image.  To examine these, we apply the General Rule for imaging to the specific
case of a thin lens.

    Rule for Locating an Image Formed by a Thin Lens   :

1. Trace a ray from the tip of the object through the point of intersection of the lens and the optical
axis — this ray continues undeviated.

2. Trace a ray from the tip of the object through the front focal point for a positive lens (back focal
point for a negative lens) — this ray is bent such that it travels parallel to the optical axis.

3. Trace a ray from the tip of the object parallel to the optical axis — this ray is bent such that it
passes through the back focal point for a positive lens (front focal point for a negative lens).

a.     Object Distance Greater than 2 Focal Lengths     ( s > 2f ):
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b.     Object Distance Equals 2 Focal Lengths     ( s = 2f ):  This is “one-to-one” or “2F-to-2F” imaging.
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c.     Object Distance Between 1 and 2 Focal Lengths     ( f < s < 2f ):
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d.     Object Distance Less than 1 Focal Length      ( s < f ):
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This case demonstrates how a simple magnifying glass works!
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3. Negative Thin Lenses

A     negative thin lens    has a negative focal length, f < 0.  Negative lenses are thinner in the middle
than they are at the edges.  There are 3 standard types of negative thin lenses:
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biconcave planoconcave negative meniscus

We can use the same rule described in the previous section for locating an image, except we use the
opposite focal points for the second and third rays when analyzing a negative lens, as indicated.
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4. Thin Lens Magnification

Just as we did for the spherical mirror, we can write the magnification associated with a thin lens in
terms of both the ratio of image to object height (i.e., the definition of magnification), or in terms
of the ratio of image to object distances.
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This result for thin lens magnification applies to both positive and negative thin lenses.
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5. Thin Lenses in Contact — Powers (in Diopters) Add

What happens when we combine 2 thin lenses by placing them right next to each other?
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But this looks just like the equation for a single lens with a focal length f given by
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Thus it makes sense to define a quantity called the     power of a lens    as:

    Power of a Lens, P    : P in diopters
f in meters
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So the total power for multiple thin lenses in contact is simply the sum of the powers of each of the
individual lenses:

  P P P Ptotal = + + +1 2 3 L .

By adding together “test lenses” of known powers, an optometrist can easily determine the total
power (in diopters) your glasses or contact lenses should have!


