

Lent/Easter Terms 2009

Chris Lester and David Ward

Section I Matter and Forces

Introduction						
These lectures will cover the core topics of Particle and Nuclear physics.						
NUCLEAR PHYSICS is the study of	PARTICLE PHYSICS is the study of					
MATTER: Complex nuclei (protons and neutrons)	MATTER: Elementary particles FORCES: Basic forces in nature					
FORCES: Strong "Nuclear" Force (underlying strong force)	Electroweak {Electromagnetic Weak					
+weak + e/m in decays Complex many-body problem, requires semi-empirical approach.	Strong Current understanding embodied in THE STANDARD MODEL					
Many models of Nuclear Physics.	which successfully describes all current data (but not including gravity)					
Historically, Nuclear Physics preceded and led to Particle Physics. Our course will discuss Nuclear Physics first, and then Particle Physics.						

	АТОМ		
Yss e	Electrons bound to atom by electromagnetic force	Binding energy ~Rydberg~10 eV	
	Size: Atom ~10 ⁻¹⁰ m, e ⁻ < 10 ⁻¹⁹ m Charge: Atom is neutral, electron – Mass: Atom mass ~ in nucleus, $m_{\rm e}$ Chemical properties depend on Ato	-e = 0.511 MeV/c² omic Number, Z.	
	NUCLEUS Nuclei held together by strong "nuclear" force	Binding energy ~10 MeV/nucleon	
	Size: Nucleus (medium A) ~ 5fm	1fm = 10 ⁻¹⁵ m	
	NUCLEON		
(Pmp)	Protons and neutrons: held together by the strong force	Binding energy ~1 GeV	
6	Size: p, n ~ 1fm Charge: proton + <i>e;</i> neutron uncharged Mass : p, n = 939.57 MeV/c² ~ 1836 <i>m</i> _e		
		4	

Matter	
We now know that all matter is made of two types of elem particles (spin ½ fermions):	entary
LEPTONS: e.g. e ⁻ , v _e	
QUARKS: e.g. up quark (u) and down quark (d) proton (uud), neutron (udd))
A consequence of relativity and quantum mechanics (Dira is that for every particle there exists an antiparticle which mass, spin, energy, momentum, BUT has the opposite sig interaction (e.g. electric charge).	ic equation) has identical gn of
ANTIPARTICLES: e.g. positron e^+ , antiquarks (\bar{u} , antiproton ($\bar{u}\bar{u}\bar{d}$)	d̄),
	5

Matter: 1 st Generation						
Almost all described	Almost all the phenomena you will have encountered so far can be described by the interactions of FOUR spin ½ particles:					
	TH	HE FIRST C	GENERATIO	N		
	Particle	Symbol	Туре	Charge Units of e		
	Electron	e-	Lepton	-1		
	Neutrino	ν _e	Lepton	0		
	Up Quark	u	Quark	+2/3		
	Down Quark d Quark -1/3					
The proton and neutron are simply the lowest energy bound states of a system of three quarks: essentially all an atomic or nuclear physicist needs. $p u u d d u f$						

Matter: 3 Generations					
Nature turns out not to be quite so simple. There are actually THREE "generations" (or "families") of fundamental fermions:					
1 st Generation		2 nd Generation		3 rd Generation	า
Electron	e-	Muon	μ_	Tau	τ-
Electron neutrino	v _e	Muon neutrino	ν_{μ}	Tau Neutrino	ν_{τ}
Up quark	u	Charm quark	с	Top quark	t
Down quark	d	Strange quark	S	Bottom quark	b
 Each generation e.g. (μ⁻, ν_μ, c, s) is a replica of (e⁻, ν_e, u, d) The main difference is the mass of the particles: the 1st generation are the lightest and the 3rd generation are heaviest. The generations are definitely distinct – μ is not just an excited electron etc. Obvious symmetry, but origin of 3 generations is NOT UNDERSTOOD. 					

Le						
Particles which DO NOT INTERACT via the STRONG interaction.						
Spin ½ fermions	Gen.	Flavour	Charge /e	Approx. Mass		
6 distinct "FLAVOURS"		e-	-1	0.511 MeV/c ²		
> 3 charged leptons: e^- , μ^- , τ^-	1 st	ν _e	0	<2 eV/c ²		
μ and τ unstable		μ_	-1	105.7 MeV/c ²		
> 3 neutral leptons: v_e, v_μ, v_τ	2 nd	ν _μ	0	<0.19 MeV/c ²		
Neutrinos are stable and		τ-	-1	1777.0 MeV/c ²		
(almost?) massless. Only	3 rd	ν _τ	0	<18.2 MeV/c ²		
but estimates of mass differences are less than 1 eV/c ² Assumed massless in Standard Model.						
> Also antimatter partners, e^+ , \overline{v}_e etc.						
Charged leptons only experience the electromagnetic and weak forces						
Neutrinos only experience the weak force ⁸						

Gauge Bosons							
 GAUGE BOSONS mediate the fundamental forces Spin 1 particles (i.e. Vector Bosons) Interact in a similar way with all fermion generations The exact way in which the Gauge Bosons interact with the leptons and quarks determines the nature of the fundamental forces. 							
to	orces.						
fo	Force	Boso	on	Spin	Strength (relative)	Mass (GeV/c ²)	
	Force Strong	Boso 8 gluons	on g	Spin 1	Strength (relative)	Mass (GeV/c ²) Massless	
	Force Force Strong Electromagnetic	Boso 8 gluons Photon	on g γ	Spin 1 1	Strength (relative) 1 10 ⁻²	Mass (GeV/c ²) Massless Massless	
	Force Force Strong Electromagnetic Weak	Boso 8 gluons Photon W and Z	on g γ W [±] , Z ⁰	Spin 1 1 1	Strength (relative) 1 10 ⁻² 10 ⁻⁷	Mass (GeV/c ²) Massless Massless 80, 91	

	How do we study particles and forces ?								
	 <u>Static Properties</u> (i.e. what particles/states exist?) Mass, spin and parity (<i>J</i>^P), magnetic moments, bound states 								
	➢ Particle Decays (most particles and many nuclei are unstable) Allowed/forbidden decays → Conservation Laws (selection rules)								
	 ▶ Particle Scattering Direct production of new massive particles, e.g. in matter/antimatter ANNIHILATION High energy ⇒ study forces at short distances Study of particle interaction cross-sections. 								
	Force	Typical Lifetime (s)	Typical Cross-section (mb)						
Strong		10-23	10						
Electromagnetic		10-20	10-2						
Ī	Weak	10-8	10-13 19						

Glossary of terms
Strong force – force which binds quarks into hadrons; mediated by gluons.
Electromagnetic Force – force between charged particles, mediated by photons
Weak force – force responsible for \beta-decay. Mediated by W and Z bosons.
Gauge boson – particle which mediates a force.
Lepton – fermion which does not feel the strong interaction
Neutrino – uncharged lepton which experiences only weak interactions
Quark – fundamental fermion which experiences all forces.
Hadron – bound state of quarks and/or antiquarks.
Baryon – hadron formed from three quarks
Meson – hadron formed from quark+antiquark
Generations/Families – three replicas of the fundamental fermions
20

