
HSA2 Graphics and Drawing Commands

1. Overview of computer graphics
2. Common drawing commands (you should know all of these)
3. Other useful graphics commands (again, you’ll use most of these)
4. Less common drawing commands (can be omitted)
5. Extra HSA2-only drawing commands (can be omitted).

►1. Computer Graphics
In all computer graphics, the screen has x and y coordinates. Each x and y coordinate identifies a single pixel.
Note that the top lef corner is x=0 and y=0. The x-axis is normal as in math class,
but the y-axis starts at the top of the screen and increases as it goes down. Positive y is downwards.

Here is an example showing the x,y axes and the results of the commands:
 GraphicsConsole gc = new GraphicsConsole(400, 400);
 gc.fillRect(30, 50, 120, 80);

Most shapes require that you specify an x and y starting position (always the top-lef corner),
and a width and height for the shape, in pixels.

►2. Common Drawing Commands

All of these use the current foreground colour, the current font, and the current line size.

● Draw a line: gc.drawLine (x1, y1, x2, y2) ;

Draws a line between the two points (x1, y1) to (x2, y2).
This is the one command that doesn’t use width and height.

● Draw a rectangle or square: gc.drawRect (x, y, width, height) ;

Draws a rectangle with upper-lef corner at (x, y) with width and height.

● Fill in a rectangle gc.fillRect (x, y, width, height) ;

Draws a filled rectangle with upper-lef corner at (x, y) with width of width and height of height.

 TIP: To outline a rectangle, do a fillRect followed by drawRect (using different colours)
gc.setColor(Color.GREEN);
gc.fillRect(50,50,100,100);
gc.setColor(Color.YELLOW);
gc.drawRect(50,50,100,100); //we now have a green square with a yellow outline.

● Draw an oval or circle: gc.drawOval (x, y, width, height) ;

Draws an oval. The oval is inscribed in the rectangle
defined by the upper-lef corner (x, y) with width of
width and height of height.

● Fill in an oval or circle gc.fillOval (x, y, width, height);

Draws a filled oval. The oval is inscribed in the rectangle defined by the upper-lef corner (x, y)
with width of width and height of height.

● Write text on the screen gc.drawString (str, x, y);

Draws the string str at the starting point (x, y) using the current font and foreground colour.
The y coordinate is the bottom of the text (unlike all other shape drawing).

Example : gc.drawString("Lives = " + player.lives , 50,70);

(x,y)

height

width

● Draw or fill a polygon (first method – I prefer this one)

gc.drawPolygon(Polygon p); gc.fillPolygon(Polygon p);

Draws (or fills) a polygon on the drawing area. The polygon p is created ahead of time.
The following code shows how to draw a triangle:

Polygon triangle = new Polygon();
triangle.addPoint(50, 100);
triangle.addPoint(150, 310);
triangle.addPoint(350, 70);
gc.drawPolygon(triangle);

● Draw or fill a polygon (second method)

gc.drawPolygon(int[] x, int[] y, int n); gc.fillPolygon(int[] x, int[] y, int n);

Draws (or fills) a polygon on the drawing area. The polygon is created “on the fly” by a list of x,y
values for the vertices and 'n' stating how many vertices there are.

► 3. Other useful graphics methods

There is a separate document explaining how to change colours and fonts.

● Change line thickness: gc.setStroke(size);

Enter an integer to set the size of the drawing stroke.
Does not affect text output nor drawstring().
The default value is 1.

● Turns AntiAliasing on or off: gc.setAntiAlias(true or false);

This makes all diagonal and curved lines smoother when drawing graphics.
It also smooths text when when using drawstring().
You should probably always use this unless all your lines are vertical and horizontal.
The default value is false.

● Allow window size to be changed gc.setResizable(true or false);

This enables or disables resizing the graphics console by dragging the mouse.
If you do this, you’ll have to recalculate where you’re drawing things based on the window size.
The default value is false.

● Centre window on screen gc.setLocationRelativeTo(null);

● gc.getDrawWidth (); and gc.getDrawHeight ();

This returns the width and the height of the drawing area (graphics console) in pixels

For example, you could use getWidth() in place of the width number in a call to drawOval(), and
the oval will be as wide as the screen:

 gc.fillOval(0, 0, gc.getDrawWidth(), gc.getDrawHeight());

These methods are only useful if you enable windows to be resized.
Otherwise you already know the window width and height and there’s no
need to ask what they are.
We typically set global constants for these values:

static final int WINW = 1024;
static final int WINH = 900;
GraphicsConsole gc = new GraphicsConsole(WINW, WINH);

● Popup message box gc.showDialog(String message, String title);

Creates a popup message box (dialog) with the
message and title specified.
The program stops until OK is pressed.

 In graphics programs you should be using
this or gc.drawString to print messages to the
user, not System.out.println().

Example : gc.showDialog("Thank you for playing" , "Game Over");

● Popup message box getting user input gc.showInputDialog(message, title);

This makes a dialog box that allows a line of text to be typed in.
The dialog box has the message and title specified. The program stops until OK is pressed.
The following code shows how to handle “cancel” and empty strings:

 String name = gc.showInputDialog("What is your name?", "Player 1:");
 if(name == null){ //handle CANCEL option
 System.out.println("Cancel pressed");
 System.exit(0); //or do something else
 }
 //handle OK option with no text
 if (name.equals("")) name = "No Name";

If you ask for a number (e.g. how many players there are), the answer is still stored as a string
and you’ll have to convert it to a number before using it.

 In graphics programs you should be using this to get input from the user,
not System.out.println() and Scanner which are console based.

►4. Advanced Graphics Methods (infrequently used)

 drawArc() and fillArc() are the most useful ones here.

● gc.drawRoundRect (x, y, width, height, arcWidth, arcHeight);

Draws a rectangle with rounded corners with upper-lef corner at (x, y) with width of width and
height of height. arcWidth and arcHeight are the width and height of the ellipse used to draw
the rounded corners.

● gc.fillRoundRect (x, y, width, height, arcWidth, arcHeight);

Draws a filled rectangle with rounded corners with upper-lef corner at (x, y) with width of width
and height of height. arcWidth and arcHeight are the width and height of the ellipse used to
draw the rounded corners.

● gc.drawArc (x, y, width, height, startAngle, arcAngle);

Draws an arc. The arc is inscribed in the rectangle defined
by the upper-lef corner (x, y) with width of width and
height of height. It starts at startAngle degrees and goes
counterclockwise for arcAngle degrees.

● gc.fillArc (x, y, width, height, startAngle, arcAngle);

Draws a filled arc. The arc is inscribed in the rectangle
defined by the upper-lef corner (x, y) with width of width
and height of height. It starts at startAngle degrees and goes counterclockwise for arcAngle
degrees.

● gc.setPaintMode ();

All drawing will now cover or overlay whatever is underneath it
(ie. opposite to XORmode) .

● gc.setXORMode (backgroundColor);

Any time you draw over something, it will show through.
(Technically, the new shape is XOR'd with the background.) You must specify the background
color to stop it from showing through when you draw.

gc.fillArc (20, 20, 50, 50,

30, 300);

(x,y)

width

height

► 5. Extra HSA-only drawing commands

The following (maple leaf and star) are NOT standard Java Swing commands.
They will ONLY work if hsa2 is imported. There’s probably no point using them.
They are only kept for backwards compatibility

● gc.drawMapleLeaf (x, y, width, height);

Draws a maple leaf. The maple leaf is inscribed in the rectangle defined by the upper-lef corner
(x, y) with width of width and height of height.

● gc.fillMapleLeaf (x, y, width, height);

Draws a filled maple leaf. The maple leaf is inscribed in the rectangle defined by the upper-lef
corner (x, y) with width of width and height of height.

● gc.drawStar (x, y, width, height);

Draws a star inscribed in the rectangle defined by the upper-
lef corner (x, y) with width of width and height of height.

● gc.fillStar (x, y, width, height);

Draws a filled star inscribed in the rectangle defined by the upper-lef corner (x, y) with width of
width and height of height.

	►1. Computer Graphics
	►2. Common Drawing Commands
	► 3. Other useful graphics methods

	►4. Advanced Graphics Methods (infrequently used)
	► 5. Extra HSA-only drawing commands

	The following (maple leaf and star) are NOT standard Java Swing commands. They will ONLY work if hsa2 is imported. There’s probably no point using them. They are only kept for backwards compatibility

