
File I/O summary
read keyboard using Scanner

Scanner keyb = new Scanner(System.in));

read keyboard using BufferedReader

BufferedReader input = new BufferedReader (new InputStreamReader(System.in));

read file using Scanner

Scanner input = new Scanner (new File(filename));

read file using buffered reader

BufferedReader brFile = new BufferedReader (new FileReader (f));

read URL

URL myURL = new URL("http://www.yahoo.com/");
URLConnection urlConn = myURL.openConnection();

BufferedReader brWeb = new BufferedReader(new InputStreamReader(urlConn.getInputStream()));

read URL (simpler)

BufferedReader brWeb = new BufferedReader(new InputStreamReader(myURL.openStream()));

write to file (PrintWriter)

PrintWriter pwFile = new PrintWriter(new BufferedWriter(new FileWriter (f)));

with flushing instead of buffering
PrintWriter pwFile = new PrintWriter(new FileWriter (f), true);

write to file (BufferedWriter)

BufferedWriter bwFile = new BufferedWriter(new FileWriter (f)));

http://www.yahoo.com/

Location of files
System.out.println(System.getProperty("user.dir"));

Or use absolute path names (but then it won’t work on other computers)
Or make a resource folder and put things in there.

M ethods
How to decide on Scanner vs BufferedReader? The final IO object that you create, the one that
wraps all of the others, determines which methods you use to read/write the data.
My quick rule-of-thumb: use Scanner for keyboard input and use the buffered objects for
everything else.

Scanner
nextInt(), next(), nextLine(), ...

BufferedReader extends Reader:
read() -- reads a character (as int).
readLine()

PrintWriter extends Writer:
print(), println(), printf()

 write()

BufferedWriter extends Writer: FileWriter extends Writer:
write()

Quick code for reading files (URLs are the same)
(add your own try-catch)

(and also close the readers)
I’m not sure if you need to declare things outside the try-catch.
It depends on how your code is set up.

BufferedReader

try {
BufferedReader brf = new BufferedReader (new FileReader(f));
String str = null;
//read until the end of file (or URL)

while((str = brf.readLine()) != null) {
System.out.println(str); //process the line

}
} catch (...) { ...

Scanner

try {
Scanner scf = new Scanner (new FileReader(f));
 //check for input. If no input, then we’ve reached the end of the file/URL

while(scf.hasNext()) {
String str = scf.nextLine();
System.out.println(str); //process the line

}
} catch (...) { ...

Strange things (not important)

If you close System.in, you can no longer get keyboard input.

Scanner input = new Scanner(System.in);

OR

BufferedReader input = new BufferedReader (
 new InputStreamReader(System.in));

input.close() ; //KEYBOARD IS CLOSED HERE. R.I.P.

If you close System.out, you can no longer display things to the screen.

PrintWriter pw = new PrintWriter(System.out);

pw.close(); //MONITOR IS CLOSED. R.I.P.

System.out.println(“Nothing will print!”);

It doesn’t seem that you can reopen these once they are closed. You have to start the program again.

