
Chapter 2: Using File Streams

In This Chapter
� Understanding streams

� Reading text files

� Writing text files

� Reading binary files

� Writing binary files

I/O, I/O, it’s off to work I go.

Or so goes the classic song, which pretty much sums up the whole purpose
of computers. Without I/O, computers — and the programs that run on
them — would be worthless.

Imagining any useful computer program that doesn’t do some form of I/O is
hard. Even the very first program presented in this book — the classic Hello,
World! program — does I/O: It displays a simple message on-screen.

In this chapter, you find out about Java’s most fundamental technique for
getting data into and out of programs: streams. You’ve been working with
streams all along in this book. When you use the System.out.print or
System.out.println method to display text on the console, you’re actu-
ally sending data to an output stream. And when you use a Scanner object
to get data from System.in, you’re reading data from an input stream.

In this chapter, you build on what you already know about stream I/O and
see how it can be used to read and write data to disk files.

Understanding Streams
A stream is simply a flow of characters to and from a program. The other
end of the stream can be anything that can accept or generate a stream of
characters, including a console window, a printer, a file on a disk drive, or
even another program.

Streams have no idea of the structure or meaning of your data; a stream is
just a sequence of characters. In later chapters in Book VIII, you find out
how to work with data at a higher level, by using databases and XML.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 679

Reading Character Streams680

You can roughly divide the world of Java stream I/O into two camps:

✦ Character streams: Character streams read and write text characters that
represent strings. You can connect a character stream to a text file to
store text data on disk. Typically, text files use special characters called
delimiters to separate elements of the file. For example:

• A comma-delimited file uses commas to separate individual fields
of data.

• A tab-delimited file uses tabs to separate fields.

You can usually display a text file in a text editor and make some sense
of its contents.

✦ Binary streams: Binary streams read and write individual bytes that rep-
resent primitive data types. You can connect a binary stream to a binary
file to store binary data on disk. The contents of a binary file makes per-
fect sense to the programs that read and write them. However, if you try
to open a binary file in a text editor, the file’s contents look like gibberish.

Conceptually, the trickiest part of understanding how streams work is getting
your mind around all the different classes. Java has more than 60 classes for
working with streams. Fortunately, you only need to know about a few of
them for most file I/O applications. In the rest of this chapter, I tell you about
the most important classes for working with character and binary streams.

All the classes in this chapter are in the java.io package. So programs that
work with file streams include an import java.io.* statement.

Reading Character Streams
To read a text file through a character stream, you usually work with the fol-
lowing classes:

✦ File: The File class, which is covered in detail in the preceding chap-
ter, represents a file on disk. In file I/O applications, the main purpose of
the File class is to identify the file you want to read from or write to.

✦ FileReader: The FileReader class provides basic methods for read-
ing data from a character stream that originates from a file. It provides
methods that let you read data one character at a time. You won’t usu-
ally work directly with this class. Instead, you create a FileReader
object to connect your program to a file, and then pass that object to
the constructor of the BufferedReader class, which provides more
efficient access to the file. (This class extends the abstract class Reader,
which is the base class for a variety of different classes that can read
character data from a stream.)

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 680

Book VIII
Chapter 2

Using File Stream
s

Reading Character Streams 681

✦ BufferedReader: This class “wraps” around the FileReader class
to provide more efficient input. This class adds a buffer to the input
stream that allows the input to be read from disk in large chunks rather
than one byte at a time. This can result in a huge improvement in per-
formance. The BufferedReader class lets you read data one character
at a time or a line at a time. In most programs, you read data one line at
a time, and then use Java’s string-handling features to break the line into
individual fields.

Table 2-1 lists the most important constructors and methods of these classes.

Table 2-1 The BufferedReader and FileReader Classes
Constructors Description

BufferedReader Creates a buffered reader from any object that extends
(Reader in) the Reader class. Typically, you pass this constructor

a FileReader object.

FileReader(File file) Creates a file reader from the specified File object.
Throws FileNotFoundException if the file
doesn’t exist or if it is a directory rather than a file.

FileReader(String path) Creates a file reader from the specified pathname.
Throws FileNotFoundException if the file
doesn’t exist or if it is a directory rather than a file.

Methods Description

void close() Closes the file. Throws IOException.

int read() Reads a single character from the file and returns it as
an integer. Returns –1 if the end of the file has been
reached. Throws IOException.

String readLine() Reads an entire line and returns it as a string. Returns
null if the end of the file has been reached. Throws
IOException.

void skip(long num) Skips ahead the specified number of characters.

In the following sections, you find out how to read a file named movies.txt
that contains one line for ten of my favorite movies. Each line of the file con-
tains the title of the movie, a tab, the year the movie was released, another
tab, and the price I paid for it at the video store. Here’s the contents of the file:

It’s a Wonderful Life➪1946➪14.95
The Great Race➪1965➪12.95
Young Frankenstein➪1974➪16.95
The Return of the Pink Panther➪1975➪11.95
Star Wars➪1977➪17.95
The Princess Bride➪1987➪16.95
Glory➪1989➪14.95

(from various classes)

682 Reading Character Streams

Apollo 13➪1995➪19.95
The Game➪1997➪14.95
The Lord of the Rings: The Fellowship of the Ring➪

2001➪19.95

(In this list, the arrows represent tab characters.) Later in this chapter, I show
you a program that writes data to this file.

If you create this file with a text editor, make sure your text editor correctly
preserves the tabs.

Creating a BufferedReader
The normal way to connect a character stream to a file is to create a File
object for the file using one of the techniques presented in the preceding chap-
ter. Then, you can call the FileReader constructor to create a FileReader
object and pass this object to the BufferedReader constructor to create a
BufferedReader object. For example:

File f = new File(“movies.txt”);
BufferedReader bfIn = new BufferedReader(

new FileReader(f));

Here, a BufferedReader object is created to read the movies.txt file.

Reading from a character stream
To read a line from the file, you use the readLine method of the
BufferedReader class. This method returns null when the end of the
file is reached. As a result, testing the string returned by the readLine
method in a while loop to process all the lines in the file is common.

For example, this code snippet reads each line from the file and prints it to
the console:

String line = bfIn.readLine();
while (line != null)
{

System.out.println(line);
line = bfIn.readLine();

}

After you read a line of data from the file, you can use Java’s string handling
features to pull out the individual bits of data from the line. In particular, you
can use the split method to separate the line into the individual strings
that are separated by tabs. Then, you can use the appropriate parse meth-
ods (such as parseInt and parseDouble) to convert each string to its
correct data type.

Book VIII
Chapter 2

Using File Stream
s

Reading Character Streams 683

For example, here’s a routine that converts a line read from the movies.
txt file to the title (a string), year (an int), and price (a double):

String[] data = line.split(“\t”);
String title = data[0];
int year = Integer.parseInt(data[1]);
double price = Double.parseDouble(data[2]);

After the entire file is read, you can close the stream by calling the close
method:

bfIn.close();

Reading the movies.txt file
Listing 2-1 shows a complete, albeit simple, program that reads the movies.
txt file and prints the contents of the file to the console.

LISTING 2-1: READING FROM A TEXT FILE

import java.io.*; ➞ 1
import java.text.NumberFormat;

public class ReadFile
{

public static void main(String[] args)
{

NumberFormat cf = NumberFormat.getCurrencyInstance();

BufferedReader bfIn = getReader(“movies.txt”);

Movie movie = readMovie(bfIn);
while (movie != null)
{

String msg = Integer.toString(movie.year);
msg += “: “ + movie.title;
msg += “ (“ + cf.format(movie.price) + “)”;
System.out.println(msg);
movie = readMovie(bfIn);

}
}

private static BufferedReader getReader(String name)
{

BufferedReader bfIn = null;
try
{

File file = new File(name);
bfIn = new BufferedReader(

new FileReader(file));
}
catch (FileNotFoundException e)
{

➞

➞
➞

10

12
13

➞

➞

21

23

continued

684 Reading Character Streams

LISTING 2-1 (CONTINUED)

System.out.println(“The file doesn’t exist.”);
System.exit(0);

}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return bfIn;

}

private static Movie readMovie(BufferedReader bfIn) 45
{

➞

String title;
int year;
double price;
String line = “”;
String[] data;

try
{

line = bfIn.readLine();
}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}

if (line == null)
return null;

else
{

data = line.split(“\t”);
title = data[0];
year = Integer.parseInt(data[1]);
price = Double.parseDouble(data[2]);
return new Movie(title, year, price);

}
}

private static class Movie 75
{

➞

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

Book VIII
Chapter 2

Using File Stream
s

Reading Character Streams 685

If you run this program, the following output is displayed on the console:

1946: It’s a Wonderful Life ($14.95)
1965: The Great Race ($12.95)
1974: Young Frankenstein ($16.95)
1975: The Return of the Pink Panther ($11.95)
1977: Star Wars ($17.95)
1987: The Princess Bride ($16.95)
1989: Glory ($14.95)
1995: Apollo 13 ($19.95)
1997: The Game ($14.95)
2001: The Lord of the Rings: The Fellowship of the Ring

($19.95)

Because I’ve already explained most of this code, the following paragraphs
provide just a roadmap to this program:

➞ 1 The program begins with import java.io.* to import all the Java
I/O classes used by the program.

➞10 The program uses a method named getReader to create a
BufferedReader object that can read the file. The name of the file
is passed to this method as a parameter. Note that in a real program,
you’d probably get this filename from the user via a JFileChooser
dialog box or some other means. In any event, the BufferedReader
object returned by the getReader method is saved in a variable
named bfIn.

➞12 Another method, named readMovie, is used to read each movie
from the file. This method returns a Movie object — Movie is a pri-
vate class that’s defined later in the program. If the end of the file has
been reached, this method returns null.

➞13 A while loop is used to process each movie. This loop simply builds
a message string from the Movie object, displays it on the console,
and then calls readMovie to read the next movie in the file.

➞21 The program ends without closing the file. That’s okay, though,
because the file is closed automatically when the program that
opened it ends. If the program were to go on with other processing
after it was finished with the file, you’d want to close the file first.

➞23 The getReader method creates a BufferedReader object for the
filename passed as a parameter. If any exceptions are thrown while
trying to create the BufferedReader, the program exits.

➞45 The readMovie method reads a line from the reader passed as a
parameter, parses the data in the line, creates a Movie object from the
data, and returns the Movie object. If the end of the file is reached,
this method returns null. The statement that reads the line from the
file is enclosed in a try/catch block that exits the program if an I/O
error occurs.

Writing Character Streams686

➞75 The Movie class is a private inner class that defines the movie objects.
To keep the class simple, it uses public fields and a single constructor
that initializes the fields.

Writing Character Streams
The usual way to write data to a text file is to use the PrintWriter class,
which as luck has it you’re already familiar with: It’s the same class that pro-
vides the print and println methods used to write console output. As a
result, the only real trick to writing output to a text file is figuring out how to
connect a print writer to a text file. To do that, you work with three classes:

✦ FileWriter: The FileWriter class connects to a File object but
provides only rudimentary writing ability.

✦ BufferedWriter: This class connects to a FileWriter and provides
output buffering. Without the buffer, data is written to disk one charac-
ter at a time. This class lets the program accumulate data in a buffer and
writes the data only when the buffer is filled up or when the program
requests that the data be written.

✦ PrintWriter: This class connects to a Writer, which can be a
BufferedWriter, a FileWriter, or any other object that extends
the abstract Writer class. Most often, you connect this class to a
BufferedWriter.

The PrintWriter class is the only one of these classes whose methods
you usually use when you write data to a file. Table 2-2 lists the most impor-
tant constructors and methods of this class.

Table 2-2 The PrintWriter, BufferedWriter, and FileWriter Classes
Constructors Description

PrintWriter(Writer out) Creates a print writer for the specified output writer.

PrintWriter(Writer out, Creates a print writer for the specified output writer. If
boolean flush) the second parameter is true, the buffer is automati-

cally flushed whenever the printlnmethod is
called.

BufferedWriter(Writer Creates a buffered writer from the specified writer.
out) Typically, you pass this constructor a FileWriter

object.

FileWriter(File file) Creates a file writer from the specified File object.
Throws IOException if an error occurs.

FileWriter(File file, Creates a file writer from the specified File object.
boolean append) Throws IOException if an error occurs. If the

second parameter is true, data is added to the end of
the file if the file already exists.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 686

Book VIII
Chapter 2

Using File Stream
s

Writing Character Streams 687

Constructors Description

FileWriter(String path) Creates a file writer from the specified pathname.
Throws IOException if an error occurs.

FileWriter(String path, Creates a file writer from the specified pathname.
boolean append) Throws IOException if an error occurs. If the

second parameter is true, data is added to the end of
the file if the file already exists.

PrintWriter Methods Description

void close() Closes the file.

void flush() Writes the contents of the buffer to disk.

int read() Reads a single character from the file and returns it
as an integer. Returns –1 if the end of the file has
been reached. Throws IOException.

void print(value) Writes the value, which can be any primitive type or
any object. If the value is an object, the object’s
toString() method is called.

void println(value) Writes the value, which can be any primitive type or
any object. If the value is an object, the object’s
toString() method is called. A line break is writ-
ten following the value.

Connecting a PrintWriter to a text file
To connect a character stream to an output file, you first create a File
object for the file as I describe in the preceding chapter. Then, you call the
PrintWriter constructor to create a PrintWriter object you can use to
write to the file. This constructor wraps around a BufferedWriter object,
which in turn wraps around a FileWriter object like this:

File file = new File(“movies.txt”);
PrintWriter pwOut =

new PrintWriter(
new BufferedWriter(

new FileWriter(file)));

If you find this a little confusing, that’s good! That makes me feel a little
better, because I find it a little confusing too. The basic idea going on here is
that each of the classes is adding a capability to the class it wraps. At the
bottom is the FileWriter class, which has the ability to write characters to
a file. The BufferedWriter class adds buffering to the mix, saving data in
a buffer until it makes sense to write it all out to the file in one big spurt. And
the PrintWriter class adds basic formatting capabilities, like adding line
endings at the end of each line and converting primitive types to strings.

Both the FileWriter and the PrintWriter classes have an optional
boolean parameter you can use to add extra capabilities to the file stream.

688 Writing Character Streams

If you specify true in the FileWriter constructor, the file is appended if it
exists. That simply means that any data in the file is retained; data you write
to the file in your program is simply added on to the end of the file. Here’s a
PrintWriter constructor that appends data to its file:

File file = new File(“movies.txt”);
PrintWriter pwOut =

new PrintWriter(
new BufferedWriter(

new FileWriter(file, true)))// append mode

If you specify false instead of true, or if you leave this parameter out alto-
gether, an existing file is deleted, and its data is lost.

The boolean parameter in the PrintWriter class has less dire conse-
quences. It simply tells the PrintWriter class that it should tell the
BufferedWriter class to flush its buffer whenever you use the println
method to write a line of data. Although this option might decrease the effi-
ciency of your program by a small amount, it also makes the program a little
more reliable because it reduces the odds of losing data because your pro-
gram or the whole computer crashes while unwritten data is in the buffer.

Unfortunately, the code for specifying this option looks a little goofy because
of the way the constructors for the BufferedWriter and FileWriter
classes are nested:

File file = new File(“movies.txt”);
PrintWriter pwOut =

new PrintWriter(
new BufferedWriter(

new FileWriter(file)), true); ////mode flush

If all these nested constructors make your head spin, you can always con-
struct each object separately and use variables to keep track of them. Here’s
an example that does that, and turns on append mode for the FileWriter
and flush mode for the PrintWriter:

FileWriter fw = new FileWriter(file, true);
BufferedWriter bw = new BufferedWriter(fw);
PrintWriter pwOut = new PrintWriter(bw, true);

If you find this coding technique easier to understand, by all means use it.

Writing to a character stream
After you successfully connect a character stream to a file, writing data to it
is as easy as writing text to the console. You just use the print and println
methods exactly as if you’re writing to the console.

Book VIII
Chapter 2

Using File Stream
s

Writing Character Streams 689

One minor complication is that if you’re writing data to a text file in a delimited
format, you have to include statements that write the delimiter characters
to the file. For example, suppose the title and year for a movie you want to
write to the text file are stored in String variables named title and year.
This snippet of code writes these fields with a tab delimiter between them:

System.out.print(title);
System.out.print(“\t”);
System.out.println(year);

Here, the last item to be written is written with the println method rather
than the print method. That ends the current line.

If you prefer to be a little more efficient, you can build a string representing
the entire line, and then write the line all at once:

String line = title + “\t” + year;
System.out.println(line);

This way is a little more efficient than the previous version, but not as much
as you’d think. In most cases, the BufferedWriter holds your text in a
buffer until the println method is called anyway.

If you didn’t specify the flush option when you created the PrintWriter
object, you can still periodically force any data in the buffer to be written to
disk by calling the flush method:

pwOut.flush();

Also, when you’re finished writing data to the file, you can close the file by
calling the close method:

pwOut.close();

Writing the movies.txt file
Listing 2-2 shows a complete program that writes lines to a text file. The data
written is taken from an array that’s hard-coded into the file, but you can
easily imagine how to obtain the data from the user by prompting for con-
sole input or using text fields in a Swing application.

LISTING 2-2:WRITING TO A TEXT FILE

import java.io.*;

public class WriteFile
{

public static void main(String[] args) ➞ 5

continued

690 Writing Character Streams

LISTING 2-2 (CONTINUED)

{
Movie[] movies = getMovies();

PrintWriter pwOut = openWriter(“movies.txt”);
for (Movie m : movies)

writeMovie(m, pwOut);
pwOut.close();

}

private static Movie[] getMovies() 15
{

➞

Movie[] movies = new Movie[10];

movies[0] = new Movie(“It’s a Wonderful Life”, 1946, 14.95);
movies[1] = new Movie(“The Great Race”, 1965, 12.95);
movies[2] = new Movie(“Young Frankenstein”, 1974, 16.95);
movies[3] = new Movie(“The Return of the Pink Panther”, 1975,

11.95);
movies[4] = new Movie(“Star Wars”, 1977, 17.95);
movies[5] = new Movie(“The Princess Bride”, 1987, 16.95);
movies[6] = new Movie(“Glory”, 1989, 14.95);
movies[7] = new Movie(“Apollo 13”, 1995, 19.95);
movies[8] = new Movie(“The Game”, 1997, 14.95);
movies[9] = new Movie(“The Lord of the Rings: The Fellowship

of the Ring”, 2001, 19.95);

return movies;
}

private static PrintWriter openWriter(String name) 40
{

➞

try
{

File file = new File(name);
PrintWriter pwOut =

new PrintWriter(
new BufferedWriter(

new FileWriter(file)), true);
return pwOut;

}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return null;

}

private static void writeMovie(Movie m, ➞ 58
PrintWriter pwOut)
{

String line = m.title;
line += “\t” + Integer.toString(m.year);
line += “\t” + Double.toString(m.price);
pwOut.println(line);

Book VIII
Chapter 2

Using File Stream
s

Writing Character Streams 691

}

private static class Movie ➞ 67
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

Because all the coding elements in this program have already been explained
in this chapter, the following paragraphs just provide a roadmap to the major
part of the program:

➞ 5 The main method begins by calling a method named getMovies,
which returns an array of Movie objects to be written to the file.
(The Movie class is defined as an inner class later in the program.)
Then, it calls openWriter, which creates a PrintWriter object
the program can use to write data to the file. Next, it uses an enhanced
for loop to call the writeMovie method for each movie in the array.
This method accepts a Movie object that contains the movie to be
written and a PrintWriter object to write the movie to. Finally, the
PrintWriter is closed.

➞15 The getMovies method returns an array of Movie objects that are
written to a file. In a real-life program, you probably do something
other than hard-code the movie information in this method. For
example, you might prompt the user to enter the data or use a Swing
frame to get the data.

➞40 The openWriter method creates a PrintWriter object for the
filename passed to it as a parameter. The PrintWriter uses a
buffer that’s flushed each time println is called.

➞58 The writeMovie method accepts as parameters a Movie object to
be written and the PrintWriter the movie should be written to.
It creates a string that includes the title, a tab, the year, another tab,
and the price. Then, it writes the string to the file.

➞67 The Movie class is an inner class that defines a movie object. This
class simply consists of three public fields (title, year, and price) and
a constructor that initializes the fields.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 691

Reading Binary Streams692

Reading Binary Streams
Binary streams are a bit tougher to read than character streams, but not
much. The biggest obstacle to pass when you’re reading a binary stream is
that you need to know exactly the type of each item that was written to the
file. If any incorrect data is in the file, the program won’t work. So you need
to ensure the file contains the data your program expects it to contain.

To read a binary file, you usually work with the following classes:

✦ File: Once again, you use the File class to represent the file itself.

✦ FileInputStream: The FileInputStream is what connects the
input stream to a file.

✦ BufferedInputStream: This class adds buffering to the basic
FileInputStream, which improves the stream’s efficiency and
gives it a moist and chewy texture.

✦ DataInputStream: This is the class you actually work with to read
data from the stream. The other Stream classes read a byte at a time.
This class knows how to read basic data types, including primitive types
and strings.

Table 2-3 lists the vital constructors and methods of these classes.

Table 2-3 The BufferedReader and FileReader Classes
Constructors Description

BufferedInputStream Creates a buffered input stream from any object that
(InputStream in) extends the InputStream class. Typically, you pass

this constructor a FileInputStream object.

DataInputStream Creates a data input stream from any object that
(InputStream in) extends the InputStream class. Typically, you pass

this constructor a BufferedInputStream object.

FileInputStream Creates a file input stream from the specified File
(File file) object. Throws FileNotFoundException if the file

doesn’t exist or if it is a directory rather than a file.

FileInputStream Creates a file input stream from the specified path-
(String path) name. Throws FileNotFoundException if the file

doesn’t exist or if it is a directory rather than a file.

DataInputStream Methods Description

boolean readBoolean() Reads a boolean value from the input stream. Throws
EOFException and IOException.

byte readByte() Reads a byte value from the input stream. Throws
EOFException and IOException.

char readChar() Reads a char value from the input stream. Throws
EOFException and IOException.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 692

Book VIII
Chapter 2

Using File Stream
s

Reading Binary Streams 693

DataInputStream Methods Description

double readDouble() Reads a double value from the input stream. Throws
EOFException and IOException.

float readFloat() Reads a float value from the input stream. Throws
EOFException and IOException.

int readInt() Reads an int value from the input stream. Throws
EOFException and IOException.

long readLong() Reads a long value from the input stream. Throws
EOFException and IOException.

short readShort() Reads a short value from the input stream. Throws
EOFException and IOException.

String readUTF() Reads a string stored in UTF format from the input stream.
Throws EOFException, IOException, and
UTFDataFormatException.

The following sections present programs that read and write data in a binary
file named movies.dat that contains information about movies. Each
record in this file consists of a UTF string containing the movie’s title, an int
representing the year the movie was released, and a double representing
the price I paid for the movie at my local discount video store. Although the
format of this file is different than the movies.txt file shown earlier in this
chapter, the file contains the same data. You can refer to the earlier section
“Reading Character Streams” to see a listing of the movies in this file.

Creating a DataInputStream
To read data from a binary file, you want to connect a DataInputStream
object to an input file. To do that, you use a File object to represent the
file, a FileInputStream object that represents the file as an input stream,
a BufferedInputStream object that adds buffering to the mix, and finally
a DataInputStream object to provide the methods that read various data
type. The constructor for such a beast looks like this:

File file = new File(“movies.dat”);
DataInputStream dsIn = new DataInputStream(

new BufferedInputStream(
new FileInputStream(file)));

If all the nesting makes you nauseous, you can do it this way instead:

File file = new File(“movies.dat”);
FileInputStream fs = new FileInputStream(file);
BufferedInputStream bs = new BufferedInputStream(fs);
DataInputStream dsIn = new DataInputStream(bs);

Either way, the effect is the same.

694 Reading Binary Streams

Reading from a data input stream
With binary files, you don’t read an entire line into the program and parse
it into individual fields. Instead, you use the various read methods of the
DataInputStream class to read the fields one at a time. To do that, you
have to know the exact sequence in which data values appear in the file.

For example, here’s a code snippet that reads the information for a single
movie and stores the data in variables:

String title = dsIn.readUTF();
int year = dsIn.readInt();
double price = dsIn.readDouble();

Note that the read methods all throw EOFException if the end of the file
is reached and IOException if an I/O error occurs. So you need to call
these methods inside a try/catch block that catches these exceptions.
The readUTF method also throws UTFDataFormatException, but that
exception is a type of IOException, so you probably don’t need to catch it
separately.

The read methods are usually used in a while loop to read all the data from
the file. When the end of the file is reached, EOFException is thrown. You
can then catch this exception and stop the loop. One way to do that is to use
a boolean variable to control the loop:

boolean eof = false;
while (!eof)
{

try
{

String title = dsIn.readUTF();
int year = dsIn.readInt();
double price = dsIn.readDouble();
// do something with the data here

}
catch (EOFException e)
{

eof = true;
}
catch (IOException e)
{

System.out.println(“An I/O error has
occurred!”);

System.exit(0);
}

}

Here, the boolean variable eof is set to true when EOFException is
thrown, and the loop continues to execute as long as eof is false.

Book VIII
Chapter 2

Using File Stream
s

Reading Binary Streams 695

After you read a line of data from the file, you can use Java’s string handling
features to pull out the individual bits of data from the line. In particular, you
can use the split method to separate the line into the individual strings
that are separated by tabs. Then, you can use the appropriate parse meth-
ods to parse each string to its correct data type.

For example, here’s a routine that converts a line read from the movies.txt
file to the title (a string), year (an int), and price (a double):

String[] data = line.split(“\t”);
String title = data[0];
int year = Integer.parseInt(data[1]);
double price = Double.parseDouble(data[2]);

After the entire file has been read, you can close the stream by calling the
close method:

dsIn.close();

This method also throws IOException, so you want to place it inside a
try/catch block.

Reading the movies.dat file
Now that you’ve seen the individual elements of reading data from a binary
file, Listing 2-3 presents a complete program that uses these techniques.
This program reads the movies.dat file, creates a Movie object for each
title, year, and price value, and prints a line on the console for the movie. If
you run this program, the output looks exactly like the output from the text
file version presented earlier in this chapter, in the section “Reading the
movies.txt file.”

LISTING 2-3: READING FROM A BINARY FILE

import java.io.*;
import java.text.NumberFormat;

public class ReadBinaryFile
{

public static void main(String[] args) 6
{

➞

NumberFormat cf = NumberFormat.getCurrencyInstance();

DataInputStream dsIn = getStream(“movies.dat”);

boolean eof = false;
while (!eof)
{

Movie movie = readMovie(in);
if (movie == null)

continued

696 Reading Binary Streams

LISTING 2-3 (CONTINUED)

eof = true;
else
{

String msg = Integer.toString(movie.year);
msg += “: “ + movie.title;
msg += “ (“ + cf.format(movie.price) + “)”;
System.out.println(msg);

}
}
closeFile(dsIn);

}
private static DataInputStream getStream(String name) ➞ 28
{

DataInputStream dsIn = null; ➞ 30
try
{

File file = new File(name);
dsIn = new DataInputStream(

new BufferedInputStream(
new FileInputStream(file)));

}
catch (FileNotFoundException e)
{

System.out.println(“The file doesn’t exist.”);
System.exit(0);

}
catch (IOException e)
{

System.out.println(“I/O Error creating file.”);
System.exit(0);

}
return dsIn;

}

private static Movie readMovie(DataInputStream in) ➞ 51
{

String title = “”;
int year = 0;;
double price = 0.0;;

try
{

title = dsIn.readUTF();
year = dsIn.readInt();
price = dsIn.readDouble();

}
catch (EOFException e)
{

return null;
}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return new Movie(title, year, price);

}

Book VIII
Chapter 2

Using File Stream
s

Reading Binary Streams 697

private static void closeFile(DataInputStream dsIn) ➞ 76
{

try
{

dsIn.close();
}
catch(IOException e)
{

System.out.println(“I/O Error closing file.”);
System.out.println();

}
}

private static class Movie ➞ 89
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

The following paragraphs describe what each method in this program does:

➞ 6 The main method is intentionally kept simple so it can focus on con-
trolling the flow of the program rather than doing the detail work of
accessing the file. As a result, it calls a method named getStream to
get a data input stream object to read the file. Then, it uses a while
loop to call a method named readMovie to get a movie object. If the
Movie object isn’t null, the movie’s data is then printed to the con-
sole. Finally, when the loop ends, a method named closeFile is
called to close the file.

➞28 The getStream method creates a DataInputStream object for
the filename passed as a parameter. If any exceptions are thrown, the
program exits. dsIn must be declared and initalized outside of try-catch

➞51 The readMovie method reads the data for a single movie and cre-
ates a Movie object. If the end of the file is reached, the method
returns null.
The closeFile method closes the input stream.
As in the other programs in this chapter, the Movie class is defined
as a private inner class.

➞

➞

76

89

since it is used in return dsIn;

698 Writing Binary Streams

Writing Binary Streams
To write data to a binary file, you use the following classes:

✦ FileOutputStream: The FileOutputStream class connects to a
File object and creates an output stream that can write to the file.
However, this output stream is limited in its capabilities: It can write
only raw bytes to the file. In other words, it doesn’t know how to write
values such as ints, doubles, or strings.

✦ BufferedOutputStream: This class connects to a FileOutput
Stream and adds output buffering.

✦ DataOutputStream: This class adds the ability to write primitive data
types and strings to a stream.

Table 2-4 lists the essential constructors and methods of these classes.

Table 2-4 The DataOutputStream, BufferedOutputStream,
and FileOutputStream Classes

Constructors Description

DataOutputStream Creates a data output stream for the specified output
(OutputStream out) stream.

BufferedIOutputStream Creates a buffered output stream for the specified
(OutputStream out) stream. Typically, you pass this constructor a

FileOutputStream object.

FileOutputStream Creates a file writer from the file. Throws
(File file) FileNotFoundException if an error occurs.

FileOutputStream(File Creates a file writer from the file. Throws
file, boolean append) FileNotFoundException if an error occurs. If

the second parameter is true, data is added to the
end of the file if the file already exists.

FileOutputStream Creates a file writer from the specified pathname.
(String path) Throws FileNotFoundException if an error

occurs.

FileOutputStream(String Creates a file writer from the specified pathname.
path, boolean append) Throws FileNotFoundException if an error

occurs. If the second parameter is true, data is added
to the end of the file if the file already exists.

DataOutputStream Methods Description

void close() Closes the file.

void flush() Writes the contents of the buffer to disk.

int size() Returns the number of bytes written to the file.

void writeBoolean Writes a boolean value to the output stream.
(boolean value) Throws IOException.

Book VIII
Chapter 2

Using File Stream
s

Writing Binary Streams 699

DataInputStream Methods Description

void writeByte(byte Writes a byte value to the output stream. Throws
value) IOException.

void writeChar(char Writes a char value to the output stream. Throws
value) IOException.

void writeDouble(double Writes a double value to the output stream. Throws
value) IOException.

void writeFloat(float Writes a float value to the output stream. Throws
value) IOException.

void writeInt(int Writes an int value to the output stream. Throws
value) IOException.

void writeLong(long Writes a long value to the output stream. Throws
value) IOException.

void writeShort(short Writes a short value to the output stream. Throws
value) IOException.

void writeUTF(String Writes a string stored in UTF format to the output
value) stream. Throws EOFException, IOException,

and UTFDataFormatException.

Creating a DataOutputStream
Creating a DataOutputStream object requires yet another one of those
crazy nested constructor things:

File file = new File(name);
DataOutputStream dsOut = new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream(file)));

If you prefer, you can unravel the constructors like this:

File file = new File(name);
FileOutputStream fos = new FileOutputStream(file);
BufferedOutputStream bos = new

BufferedOutputStream(fos);
DataOutputStream dsOut = new DataOutputStream(bos);

The FileOutputStream class has an optional boolean parameter you
can use to indicate that the file should be appended if it exists. To use this
feature, call the constructors like this:

File file = new File(name);
DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream(file, true)));

If you specify false instead of true or leave the parameter out altogether,
an existing file is deleted and its data is lost.

700 Writing Binary Streams

Writing to a binary stream
After you successfully connect a DataOutputStream to a file, writing data
to it is simply a matter of calling the various write methods to write different
data types to the file. For example, the following code writes the data for a
Movie object to the file:

dsOut.writeUTF(movie.title);
dsOut.writeInt(movie.year);
dsOut.writeDouble(movie.price);

Of course, these methods throw IOException. As a result, you have to
enclose them in a try/catch block.

If you included the BufferedOutputStream class in the stream, it accu-
mulates data in its buffer until it decides to write the data to disk. If you
want, you can force the buffer to be written to disk by calling the flush
method, like this:

dsOut.flush();

Also, when you finish writing data to the file, close the file by calling the
close method, like this:

dsOut.close();

Both the flush and close methods also throw IOException, so you
need a try/catch to catch the exception.

Writing the movies.dat file
Listing 2-4 presents a program that writes the movies.dat file from an
array of Movie objects whose values are hard-coded into the program.

LISTING 2-4:WRITING TO A TEXT FILE

import java.io.*;

public class WriteBinaryFile
{

public static void main(String[] args) ➞ 5
{

Movie[] movies = getMovies();
DataOutputStream dsOut = openOutputStream(“movies.dat”);
for (Movie m : movies)

writeMovie(m, dsOut);
closeFile(dsOut);

}

private static Movie[] getMovies() ➞ 14

Book VIII
Chapter 2

Using File Stream
s

Writing Binary Streams 701

{
Movie[] movies = new Movie[10];

movies[0] = new Movie(“It’s a Wonderful Life”, 1946, 14.95);
movies[1] = new Movie(“The Great Race”, 1965, 12.95);
movies[2] = new Movie(“Young Frankenstein”, 1974, 16.95);
movies[3] = new Movie(“The Return of the Pink Panther”, 1975,

11.95);
movies[4] = new Movie(“Star Wars”, 1977, 17.95);
movies[5] = new Movie(“The Princess Bride”, 1987, 16.95);
movies[6] = new Movie(“Glory”, 1989, 14.95);
movies[7] = new Movie(“Apollo 13”, 1995, 19.95);
movies[8] = new Movie(“The Game”, 1997, 14.95);
movies[9] = new Movie(“The Lord of the Rings: The Fellowship

of the Ring”, 2001, 19.95);
return movies;

}

private static DataOutputStream
openOutputStream(String name) 39
{

➞

DataOutputStream dsOut = null;
try
{

File file = new File(name);
out = new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream(file)));

return dsOut; // is this line needed here?
}
catch (IOException e)
{

System.out.println(
“I/O Exception opening file.”);

System.exit(0);
}
return dsOut;

}

private static void writeMovie(Movie m, ➞ 59
DataOutputStream dsOut)
{

try
{

dsOut.writeUTF(m.title);
dsOut.writeInt(m.year);
dsOut.writeDouble(m.price);

}
catch (IOException e)
{

System.out.println(
“I/O Exception writing data.”);

System.exit(0);
}

}

private static void closeFile(DataOutputStream dsOut) ➞ 76
{

continued

702 Writing Binary Streams

LISTING 2-4 (CONTINUED)

try
{

dsOut.close();
}
catch (IOException e)
{

System.out.println(“I/O Exception closing file.”);
System.exit(0);

}
}

private static class Movie ➞ 89
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

Because this chapter explains all the coding elements in this program, the fol-
lowing paragraphs just provide a roadmap to the major part of the program:

➞ 5 The main method calls getMovies to get an array of Movie objects.
Then, it calls openOutputStream to get an output stream to write
data to the file. Then, an enhanced for loop calls writeMovie to
write the movies to the file. Finally, it calls closeFile to close the file.

➞14 The getMovies method creates an array of movies to be written to
the file.

➞39 The openOutputStream method creates a DataOutputStream
object so the program can write data to the file.

➞59 The writeMovie method accepts two parameters: the movie to be
written and the output stream to write the data to.

➞76 The closeFile method closes the file.

➞89 Once again, the Movie class is included as an inner class.

